
Follow the Data

© 2011 Microsoft. All rights reserved. Written by Chris Skorlinski, Edited by Gaurav Mathur
Microsoft SQL Server Escalation Services

Abstract

Follow the Data

Many technology solutions use a STORE and FORWARD model to move data though out the business. It

begins when source data change is detected, collected, and STORED in a cache. This cache data, often on

a schedule, is processed and FORWARD to one or more destinations. Microsoft technologies using “store

and forward” include Log Shipping, Database Mirroring, Transactional Replication, Merge Replication,

Change Data Capture, Change Tracking, Sync Services, SSIS ETL packages, and SQL Azure. As we

“Follow the Data” for Transactional Replication, look at the players, their roles, auditing options,

supportability features, and ability to handle changing business needs.

Store and Forward

In Microsoft SQL Server Replication technologies “Store and Forward” model is called Publish-Subscribe.

In this paper I’ll cover techniques used by Microsoft SQL Server Transactional Replication for moving

data throughout a topology. Topics covered include Roles, Jump Start, What’s Normal, Auditing, “NOT”

Replicated, Really Big Batches, Open Transactions, Do Over, Divide-n-Conquer, Cleanup, and

Supportability, can be applied to many technologies using similar “Store and Forward” methodology to

move data throughout an organization.

Big Picture

Microsoft SQL Server Transactional Replication designed goal is to move data from one Publisher to one

or more Subscriber in near real-time. What’s “near”,

about 5-10 seconds for simple topology, up to a few

minutes for complex environment. Using a built-in

Create Publication Wizard or via stored procedures,

you can select which objects, like tables, views, and

stored procedures, to replicated to subscribers.

Replication topology consists of 3 major components.

First, is the Log Reader Agent, a standalone executable

LogRead.exe, watching for changes committed on the

Publisher. Those changes are picked up and stored in

the 2nd component, the Distribution Database. This

database is a storage, or cache, of the changes to be

distributed. Depending on individual needs, the

Distribution database can be stored at the Publisher, a standalone SQL Server, or even on the

Subscriber. The 3rd component, the Distribution Agent, is another standalone executable, Distrib.exe,

Follow the Data

© 2011 Microsoft. All rights reserved. Written by Chris Skorlinski, Edited by Gaurav Mathur
Microsoft SQL Server Escalation Services

periodically scans the Distribution database cache for updates and sends copies of new data to

downstream consumers, called Subscribers. One Distribution Agent is created for each subscriber

requesting data. When the Distrib.exe is executing on the Distributor, we use term Push replication.

When executing on the Subscriber, Pull replication is running.

Unique business needs can be met by selecting which database objects get distributed. For example,

downstream Subscriber may be aggregating selected columns from just a few tables from multiple

sources into one business reporting or data warehouse solution. The target subscriber may include

tables or indexes not found on the Publisher to support the subscribers reporting activity. The

Subscriber may also be republishing data to other Subscribers thereby acting as both Subscriber and

Publisher.

Jump Start

Transactional Replication provides 3 options to preload subscribers as the initial step in the store and

forward process. Advantages and disadvantages of these options is discussed in SQL Server Books

Online.

1) BCP out data using Snapshot Replication

2) Manually backup the Publisher database and restore to Subscriber

3) Use any data copy solution like SSIS packages to ensure data matches

The BCP out option is default when configuring using the built-in Replication Wizard. This Wizard can be

launched from SQL Server Management Studio. Data in tables selected to be Replicated are exported

using Bulk Copy Program, BCP.exe, utility included with SQL Server. Data is stored in a shared folder and

made available to the Distribution Agent to preload the Subscriber using the 1st run.

If you are using the “Manual Backup and Restore” method to load the Subscriber, manually cleanup

database objects not needed on the Subscriber. This is also an opportunity to add objects needed on

the Subscriber but not on the Publisher, such as indexes used to support

online reporting query activity.

Before setting up Replication you may want to FLAG objects created on the

publisher as “NOT for Replication”, this instructs Distribution Agent to

ignore those objects following the Subscriber restore. In this example the

CustomerID is an identity column. Data inserted on the Publisher will

automatically be assigned a new, incremented ID. The “Not For

Replication” setting will ensure when this record is distributed to the

Subscriber the identity value will not be recomputed and overwrite the

original value. This option is also available for objects such as TRIGGERS.

http://msdn.microsoft.com/en-us/library/ms151832.aspx
http://msdn.microsoft.com/en-us/library/ms151705.aspx
http://blogs.msdn.com/b/repltalk/archive/2010/02/22/all-about-not-for-replication.aspx

Follow the Data

© 2011 Microsoft. All rights reserved. Written by Chris Skorlinski, Edited by Gaurav Mathur
Microsoft SQL Server Escalation Services

Once source and destination are in synch, Transactional Replication starts a SQL Agent Job to call

LogRead.exe. This “Store” component makes a connection to Publisher and requests list of transactions.

These transactions are extracted from the Publisher’s transaction log, and stored in the Distribution

database. The Distribution DB, will “cache” this data in table until “forward” phase moves the data to

Subscribers/Consumers.

Prior to “forwarding” data the Distribution Agent will create Replication support stored procedures and

tables need to be installed on the subscriber. This happens automatically as the first step in the

Distribution Agent “forward” phase.

In Flight

How does the system handle the 24x7 business needs during initial setup? What happens to the in-

flight data changes?

When Transactional Replication is created using the Replication Wizard, the Snapshot Agent is

contracted to begin BCP-ing out data already stored in the Publisher. This data is cached in the

“Snapshot Folder” and later used by the Distribution Agent to preload the Destination\Subscriber with

the initial data. The Snapshot Agent will take a quick Schema-Lock to obtain the tables definition. It

releases the lock and begins BCPing out the data. For large tables it will bulk export the data in multiple

parallel BCP sessions creating multiple BCP files.

Transactional Replication option “immediate_sync” begins queuing changes immediately following the

start of the Snapshot Replication BCP-out of the published data. This ensures Replication accounts for

all “in flight” transactions. Distribution Agent is responsible for loading new subscribers with the bulk

data BCP’ed out by the Snapshot Agent followed by applying of the queued data stored in the

Distribution database by the Log Reader Agent.

Picking up these “in flight” changes occurs automatically when you select option to “create a snapshot

immediately” in the New Publication Wizard dialog. The data changes will be queued in the Distribution

Database for 24 hours while new subscribers are being established.

http://blogs.msdn.com/b/repltalk/archive/2010/03/24/what-immediate-sync-means-in-transactional-replication.aspx

Follow the Data

© 2011 Microsoft. All rights reserved. Written by Chris Skorlinski, Edited by Gaurav Mathur
Microsoft SQL Server Escalation Services

If creating publications via stored procedures you can enable “in flight” capture by setting the

@immediate_sync = N'true'in the sp_addpublication stored procedure call.

If this feature is not selected, you must ensure no “in-flight” data changes occur until the publication is

created, new subscribers are configured, and Log Reader is picking up new changes.

What’s Normal?

As with any data transformation, data movement system, understanding what’s normal provides

baseline to help isolate when problems occur. Ask yourself how long it is taking to move data end-to-

end through your topology? How much data are you moving hourly, daily, and monthly. Is the flow

consistent throughout the day or peaks and valley caused by end-user activity, or scheduled job

processing.

In the Transactional Replication flow it all begins when a transaction is committed at the source. This

new data is detected by the Log Reader agent, extracted from the database’s transaction log and stored

in the Distribution database msrepl_commands table. The transaction header information is “stored” in

the Distribution database msrepl_transactions table and queued until the Distribution Agent polls for

newly cached data. When found, the new data is “forward” to 1 or more consumers or Subscribers.

Sending individual transactions wouldn’t be very efficient, therefor both Replication Agents collect

transactions into batches and distributes the entire batch. “Batch Size” is one of the adjustment you can

change to tune Replication flow for your environment in the Agent Profile settings. For overview see:

How to: Work with Replication Agent Profiles.

The Store and Forward methodology for Transactional Replication has some latency as data is moved

across a network from server to server. Normal in some environments may be 5-10 seconds, while

others 1-2 minutes. When higher latency is observed a bottleneck is occurring. Further investigation is

required to determine if either data volume has increased or if a system component is restricting the

normal flow of data. The auditing features of any Store and Forward system like Transactional

Replication provide insight into normal v. abnormal data flow.

Auditing Features

Auditing feature of each step is critical in understanding the flow of data. Transactional Replication

stores audit activity in the Distribution database. The Log Reader Agent stored audit records in the

MSlogreader_history table while the Distribution Agent stored in the MSdistribution_history table. You

can query these tables directly from SQL Server Management Studio, or view them using the Replication

Monitor utility.

http://msdn.microsoft.com/en-us/library/ms152515.aspx
http://msdn.microsoft.com/en-us/library/ms176065.aspx
http://msdn.microsoft.com/en-us/library/ms179878.aspx
http://msdn.microsoft.com/en-us/library/ms151780.aspx
http://msdn.microsoft.com/en-us/library/ms151780.aspx

Follow the Data

© 2011 Microsoft. All rights reserved. Written by Chris Skorlinski, Edited by Gaurav Mathur
Microsoft SQL Server Escalation Services

You can also control the “level” of auditing using Agent Profiles by adjusting the History Verbose Level.

While investigating abnormal flow, increasing the Audit level may provide clues as to volume change or

bottleneck. However, by default this audit data is only maintained for 2 days. It is controlled by the

Distribution History Cleanup job. Temporarily stopping the cleanup job or increasing the history

retention is a common practice to capture longer historical data.

“NOT” Replicated

When configuring Transactional Replication you select which tables to replicate. Data changes stored in

the Transaction log for non-replicated data must still be read, then skipped. Active database with large

amount of non-replicated data to be skipped can slow the detection of data to be replicated.

Other logged database operations such as index maintenance can also generate non-replicated data.

These transactional log records are also read and skipped. While this activity can’t be avoided, it should

be investigated as possible root cause when flow of data is slowed.

Is the database transactional log (*.ldf) file >20gb? If so, you may notice Log Reader Agent taking a long

time upon startup to scan the log for replicated transactions. Transactions logs approaching 100gb may

take 1-2 hours to scan depending on disk subsystem performance. Frequent log backups or using “bulk

logged” operation will reduce size of the transaction log and improve the Log Reader latency.

Really Big Batch

What happens when the data volume changes, for example, a large batch of data changes are detected

and moved through the topology. By default, a batch change of 10 million rows is detected and passed

to the Log Reader as single transaction. This is then inserted into the Distribution databases as a single

transaction and finally to the Subscriber(s) as a single transaction. If the topology takes 15 minutes to

read 10 million changes, 15 minutes to write to Distribution database, 15 minutes to read from

Distribution database, and 15 minutes to write to the Subscriber, the Subscriber could be waiting 1 hour

after the transaction has committed on the Publisher until it is observed on the Subscriber.

During this time you may observe the Replication Agents reporting “no activity in the last 10 minutes”.

This message doesn’t always indicate an error. In this example it is just an informational message that

the Agents are still running and still processing the current batch. Once the batch has moved through

each step in Replication, the Agents update their respective audit history tables.

First option is to recognize the subscribers may observe high latency while batch is being moved through

the Replication Topology. If no failure is occurring and latency can be tolerated, waiting for Replication

to catch up may be an acceptable solution.

http://blogs.msdn.com/b/repltalk/archive/2010/07/13/using-verbose-history-agent-profile-while-troubleshooting-replication.aspx

Follow the Data

© 2011 Microsoft. All rights reserved. Written by Chris Skorlinski, Edited by Gaurav Mathur
Microsoft SQL Server Escalation Services

If changes impact majority of the data it may be faster to drop Replication environment, make required

changes, then rebuild the Replication topology. This solution is often used in combination of

Backup/Restore method for setting up a subscriber. For example, if business needs require updating

every row in an 845 million row table and that table is 90% of the entire database. Dropping the

Replication, changing the data, then setting up Replication using Backup/Restore method is faster than

moving individual record changes through the Distribution databases to the subscriber. See also: SQL

2005/2008 Books Online top: How to: Initialize a Transactional Subscriber from a Backup

A third option is to publish the “execution” of a stored procedure instead of the results from a stored

procedure. This solution is best used when data changes can be applied via stored procedure. Some

creativity may be needed to implement this solution. For example if updating and inserting, a temp

table of new data may need to be imported into both the Publisher and Subscriber before the stored

procedure executes.

Another option is to instruct the Log Reader to break the single transaction into batches using the

MaxCmdsInTrans option. The same workload is transferred through the Replication Topology, however

because the Replication Agents are updating their audit table following each commit and agents are

committing in smaller batches, audit tables are updated more frequently providing “warm fuzzy” about

Replication agent status. Breaking up 10 million row update into batches of 100k changes also allows

the Replication agents to restart at 100k batch size should network or system problem occur.

These options are discussed further on ReplTalk blog

Who left the door open?

Another cause for transaction log growth is the presence of open transactions which start when client

issues a BEGIN TRAN statement, makes data changes, but no corresponding COMMIT TRAN, or

ROLLBACK TRAN statement was issued. During log backup, the transaction log can’t be purged because

“open transaction” still exists. The transaction log will continue to grow until the open transaction is

committed or closed.

To look for open transactions execute the DBCC OPENTRAN command as show below.

USE AdventureWorks2008

GO

DBCC OPENTRAN

GO

Transaction information for database 'AdventureWorks2008'.

Oldest active transaction:

 SPID (server process ID): 61

 UID (user ID) : -1

 Name : user_transaction

 LSN : (61:375:2)

 Start time : Oct 17 2011 7:37:42:737PM

http://msdn.microsoft.com/en-us/library/ms147834(SQL.90).aspx
http://blogs.msdn.com/b/repltalk/archive/2010/10/20/determine-transactional-replication-workload-to-help-resolve-data-latency.aspx

Follow the Data

© 2011 Microsoft. All rights reserved. Written by Chris Skorlinski, Edited by Gaurav Mathur
Microsoft SQL Server Escalation Services

Do Over

If problems occur, what features are available to “do over”. How does the system know where it left off

and what work was last completed?

Transactional Replication Log Reader Agent tracks the last successful transaction retrieved from the

database’s transaction long in the actual transaction log in the form of checkpoint entries. Should SQL

Server stop and restart, such as in an automatic cluster failover, the Log Reader retrieve the last

successful transaction Log Sequence Number (LSN) from the transaction log, verifies that record made it

to the Distribution Database, then retrieves new records from that point forward. You can track the last

distributed and next to distribute LSN values for the Log Reader by executing the “DBCC OPENTRAN”

command.

Sample output

--Are there any "pending" transactions?

USE [AdventureWorksLT]

DBCC OPENTRAN

Transaction information for database 'AdventureWorksLT'.

Replicated Transaction Information:

 Oldest distributed LSN : (31:1696:6)

 Oldest non-distributed LSN : (31:1741:1)

The Distribution Agent for each unique Subscriber tracks status of last committed transaction delivered

to that subscriber in MSreplication_subscriptions table stored in each subscriber. It uses the

Subscriber’s stored LSN as the starting point to begin retrieving rows from the Distribution database.

This allows the Subscriber database to be restored to an earlier time as long as the pending data is still

cached in the Distribution database. More advanced features such as “sync with backup” are discussed

in the SQL Server online books.

Divide-n-Conquer

During any store and forward processing of data an occasional problem will occur in the end to end flow

of data. Any system should provide tools to help isolate problem and allow you to focus on

troubleshooting.

The Transactional Replication points below have largest impact on the data flow.

 Reading Transaction Log (Common)

 Writing Distribution, Blocking, Disk Speed, (Rare)

 Reading Distribution, Blocking Agent, Batch Cleanup, (Rare)

 Writing Subscriber, Blocking, Triggers, Indexes to Maintain (Common)

http://msdn.microsoft.com/en-us/library/ms152560.aspx

Follow the Data

© 2011 Microsoft. All rights reserved. Written by Chris Skorlinski, Edited by Gaurav Mathur
Microsoft SQL Server Escalation Services

To isolate the problem, Transactional Replication allows a tracer token to be inserted on the Publisher.

The time to retrieve this token and write it to the Distribution Database and time to write token to the

Subscriber is tracked by the token. Tracer Tokens can be inserted and tracked using the built-in

Replication Monitor.

A common problem is the bottleneck at the Subscriber writes. As multiple transactions flow into the

Publisher these are funneled into a single stream of data into the Distribution database by the Log

Reader. The Distribution database containing just a few tables, a few indexes and only Replication

Agent connecting can usually handle the Log Reader flow. The Distribution Agent, by default, makes

single connection to the Subscriber database to push down these changes. It must contend with 100s of

end-user connections accessing multiple tables, some of which have many indexes and/or triggers.

To increase Distribution Agent flow, SQL Server 2005 and above include a SubscriptionStreams option to

write in parallel to the Subscriber. A range of values from 1 to 64 streams can be selected. Each stream

will make a connection to the Subscriber, transfer data across the streams, and then together commit

the entire batch. If contention occurs, the Distribution Agent will automatically switch to single stream,

apply the changes, and switch back to multi-streams. This parameter is not supported for non-SQL

Server Subscribers, Oracle Publishers or peer-to-peer subscriptions. For more insight into

SubscriptionStreamscheck can be found on the MSDN Repltalk blog posting.

“Christopher, Clean up this Mess”

If store-n-forward solution is keeping data around for “restarts” or supporting multiple targets,

somewhere along the way it will need to purge data no longer needed.

As discussed above, using Replication Wizard default settings, it begins by BCPing out table data into a

Snapshot folder then BCPing that data into new Subscriber. New transactions are also cached in the

Distribution Database. The Agents are also logging audit information in the Distribution Database. So

when do we cleanup all this old data?

Replication includes a couple of “cleanup” jobs visible under SQL Server Agent. The frequency and/or

amount of data to cleanup is controlled by the job parameters for each job. The “Agent history clean

up: distribution” cleans up Agent audit data older than 2 days.

The “Distribution clean up: distribution” is responsible for removing delivered data from the Distribution

Database. This Agent provides option to remove transactions from the Distribution Database cache as

soon as the transactions are replicated to Subscribers, or keep data in the cache for 24 hours. How

much historical data to keep is controlled by the cleanup job parameter. If data is kept in cache, a new

subscribers can retrieve the last Snapshot BCP files then pick up all pending transactions. The option is

controlled by the “Immediate_sync” option for Transactional Replication.

http://blogs.msdn.com/b/repltalk/archive/2010/03/11/divide-and-conquer-transactional-replication-using-tracer-tokens.aspx
http://msdn.microsoft.com/en-us/library/ms151762.aspx
http://blogs.msdn.com/b/repltalk/archive/2010/03/01/navigating-sql-replication-subscriptionstreams-setting.aspx
http://blogs.msdn.com/b/repltalk/archive/2010/03/24/what-immediate-sync-means-in-transactional-replication.aspx

Follow the Data

© 2011 Microsoft. All rights reserved. Written by Chris Skorlinski, Edited by Gaurav Mathur
Microsoft SQL Server Escalation Services

If you want to drop one Subscriber, or a Publication and all Subscribers, you can right-click an individual

Subscriber or Publication in SSMS and “Delete”. If you

want to clean up EVERYTHING, I mean turn off all

Replication you right-click “Replication” folder in SSMS

and select “Disable Publishing and Distribution”.

However, be very careful selecting this option. If there

are multiple publications originating from this Publisher,

the replication configuration information about all publications will be purged. If you encounter

problem purging Replication settings for a particular database you can disable all replication for that

database by executing sp_removedbreplication from SSMS query. Warning, ensure you’ve selected the

correct database on which replication is to be removed is selected before you run this stored procedure.

--SELECT database to remove all Replication settings

USE AdventureWorksLT2008

GO

sp_removedbreplication

GO

Advanced Supportability

In addition to the Agent history tables in the Distribution Database, the Replication Agents include

supportability feature to further isolate performance problems. Each agent can OUPTPUT text file

showing step-by-step agent activity. The OUTPUTVERBOSELEVEL setting controls the level of the details

recorded. Both of these features can be enabled as SQL Agent Job command line parameters and are

discussed on the ReplTalk blog “How to enable replication agents for logging to output files in SQL

Server”.

It’s Just SQL

As you learn more about Transactional Replication you’ll soon discover it boils down to 2 executables

connecting to SQL Server, tables to store and forward changes, and stored procedure calls performing

most of the work. These stored procedure calls appear in Profiler as RPC events. They also show in

DMV execution stats. The same tools and troubleshooting techniques used for any SQL Server activity

can be used when Replication is present.

What techniques would you use to investigate bottlenecks occurring in your SQL Server application?

Would you execute “sp_who2” to check for blocking, or maybe run Profiler Trace or execute DMVs to

determine long running queries.

http://blogs.msdn.com/b/repltalk/archive/2010/03/04/kb-article-312292-how-to-enable-replication-agents-for-logging-to-output-files-in-sql-server.aspx
http://blogs.msdn.com/b/repltalk/archive/2010/03/04/kb-article-312292-how-to-enable-replication-agents-for-logging-to-output-files-in-sql-server.aspx

Follow the Data

© 2011 Microsoft. All rights reserved. Written by Chris Skorlinski, Edited by Gaurav Mathur
Microsoft SQL Server Escalation Services

Because SQL Server Agent is much like user application, that is it connects to SQL Server, executes

stored procedures, retrieves data, writes data, the same bottlenecks which occur for user applications

also impact SQL Server Transactional Replication. Some of these include CPU, Disk, Network, Memory,

Triggers, Constraints, and Indexes.

To simulate the behavior of the Replication Agents, most of the Replication created stored procedures

can be called directly via SQL Server Management Studio. This provides further performance and

troubleshooting diagnostic capabilities.

For example to simulate the Log Reader pulling pending transactions you can execute

“sp_replshowcmds”.

--The LogReader retrieves from the Transaction Log

sp_replshowcmds

xact_seqno command

---------------------- ---------------

0x0000001A000001060005 {CALL [dbo].[sp_MSupd_SalesLTProduct](,,1574.6500…

To simulate the Distribution Agent and retrieve pending transactions in the Distribution Database you

can execute “sp_browsereplcmds” on the Distributor.

Use distribution

Go

sp_browsereplcmds

 0x00000039000000AC0005 {CALL [dbo].[sp_MSupd_SalesLTProduct]

(,,,1574.6500,,,,,,,,,,,2010-01-22 15:31:13.170,680,0x200001)}

Replication Agents executing these commands are subject to the same design considerations of other

SQL commands. For example, an UPDATE trigger on a subscriber table may cause delay in the

Distribution Agent as trigger is fired for each update being applied. Additional indexes on the Subscriber

to support ad-hoc reporting business need to be updated as Replication pushes down data changes.

Follow the Data

© 2011 Microsoft. All rights reserved. Written by Chris Skorlinski, Edited by Gaurav Mathur
Microsoft SQL Server Escalation Services

Wrap up

Many technology solutions use a STORE and FORWARD model to move data though out the business. It begins

when source data change is detected, collected, and STORED in a cache. This cache, often on a schedule, is

processed and FORWARD to one or more destinations. Microsoft technologies using “store and forward” include Log

Shipping, Database Mirroring, Transactional Replication, Merge Replication, Change Data Capture, Change

Tracking, Sync Services, SSIS ETL packages, and SQL Azure. As we “Follow the Data” look at the players, their

roles, auditing options, supportability features, and ability to handle changing business needs.

Follow the Data

© 2011 Microsoft. All rights reserved. Written by Chris Skorlinski, Edited by Gaurav Mathur
Microsoft SQL Server Escalation Services

How it all started

Ever wonder how ideas for technical papers get started? Do

they really get started on a paper napkin in low lit restaurant.

Okay, not on a napkin, sometimes it’s on a hotel notepad. Here

is the beginning of this technical paper, the Power Point

presentations and blog postings which followed.

I was staying at the DoubleTree, little board, and started

thinking about approaches for troubleshooting data latency

when running Microsoft SQL Server Transactional Replication. I

started to scribble down a few thoughts tracking the flow of

data and breaking points. As I “followed the data”, I noticed a

similarity between Replication, Database Mirroring, Log

Shipping, and various other technologies all of which have a

similar “store and forward”. I realized many of the Transactional

Replication concepts and features discussed in this paper can

also be applied to these technologies.

http://blogs.msdn.com/b/repltalk/

Transactional Replication – Follow the Data
http://www.sqlsaturday.com/viewsession.aspx?sat=87&sessionid=5248

http://blogs.msdn.com/b/repltalk/
http://www.sqlsaturday.com/viewsession.aspx?sat=87&sessionid=5248

